btcminerpro – btcminerpro

Reddcoin (RDD) 02/20 Progress Report - Core Wallet v3.1 Evolution & PoSV v2 - Commits & More Commits to v3.1! (Bitcoin Core 0.10, MacOS Catalina, QT Enhanced Speed and Security and more!)

Reddcoin (RDD) Core Dev Team Informal Progress Report, Feb 2020 - As any blockchain or software expert will confirm, the hardest part of making successful progress in blockchain and crypto is invisible to most users. As developers, the Reddcoin Core team relies on internal experts like John Nash, contributors offering their own code improvements to our repos (which we would love to see more of!) and especially upstream commits from experts working on open source projects like Bitcoin itself. We'd like tothank each and everyone who's hard work has contributed to this progress.
As part of Reddcoin's evolution, and in order to include required security fixes, speed improvements that are long overdue, the team has up to this point incorporated the following code commits since our last v3.0.1 public release. In attempting to solve the relatively minor font display issue with MacOS Catalina, we uncovered a complicated interweaving of updates between Reddcoin Core, QT software, MacOS SDK, Bitcoin Core and related libraries and dependencies that mandated we take a holistic approach to both solve the Catalina display problem, but in doing so, prepare a more streamlined overall build and test system, allowing the team to roll out more frequent and more secure updates in the future. And also to include some badly needed fixes in the current version of Core, which we have tentatively labeled Reddcoin Core Wallet v3.1.
Note: As indicated below, v3.1 is NOT YET AVAILABLE FOR DOWNLOAD BY PUBLIC. We wil advise when it is.
The new v3.1 version should be ready for internal QA and build testing by the end of this week, with luck, and will be turned over to the public shortly thereafter once testing has proven no unexpected issues have been introduced. We know the delay has been a bit extended for our ReddHead MacOS Catalina stakers, and we hope to have them all aboard soon. We have moved with all possible speed while attempting to incorproate all the required work, testing, and ensuring security and safety for our ReddHeads.
Which leads us to: PoSV v2 activation and the supermajority on Mainnet at the time of this writing has reached 5625/9000 blocks or 62.5%. We have progressed quite well and without any reported user issues since release, but we need all of the community to participate! This activation, much like the funding mechanisms currently being debated by BCH and others, and employed by DASH, will mean not only a catalyst for Reddcoin but ensure it's future by providing funding for the dev team. As a personal plea from the team, please help us support the PoSV v2 activation by staking your RDD, no matter how large or small your amount of stake.
Every block and every RDD counts, and if you don't know how, we'll teach you! Live chat is fun as well as providing tech support you can trust from devs and community ReddHead members. Join us today in staking and online and collect some RDD "rain" from users and devs alike!
If you're holding Reddcoin and not staking, or you haven't upgraded your v2.x wallet to v3.0.1 (current release), we need you to help achieve consensus and activate PoSV v2! For details, see the pinned message here or our website or medium channel. Upgrade is simple and takes moments; if you're nervous or unsure, we're here to help live in Telegram or Discord, as well as other chat programs. See our website for links.
Look for more updates shortly as our long-anticipated Reddcoin Payment Gateway and Merchant Services API come online with point-of-sale support, as we announce the cross-crypto-project Aussie firefighter fundraiser program, as well as a comprehensive update to our development roadmap and more.
Work has restarted on ReddID and multiple initiatives are underway to begin educating and sharing information about ReddID, what it is, and how to use it, as we approach a releasable ReddID product. We enthusiastically encourage anyone interested in working to bring these efforts to life, whether writers, UX/UI experts, big data analysts, graphic artists, coders, front-end, back-end, AI, DevOps, the Reddcoin Core dev team is growing, and there's more opportunity and work than ever!
Bring your talents to a community and dev team that truly appreciates it, and share the Reddcoin Love!
And now, lots of commits. As v3.1 is not yet quite ready for public release, these commits have not been pushed publicly, but in the interests of sharing progress transparently, and including our ReddHead community in the process, see below for mind-numbing technical detail of work accomplished.
e5c143404 - - 2014-08-07 - Ross Nicoll - Changed LevelDB cursors to use scoped pointers to ensure destruction when going out of scope. *99a7dba2e - - 2014-08-15 - Cory Fields - tests: fix test-runner for osx. Closes ##4708 *8c667f1be - - 2014-08-15 - Cory Fields - build: add funcs.mk to the list of meta-depends *bcc1b2b2f - - 2014-08-15 - Cory Fields - depends: fix shasum on osx < 10.9 *54dac77d1 - - 2014-08-18 - Cory Fields - build: add option for reducing exports (v2) *6fb9611c0 - - 2014-08-16 - randy-waterhouse - build : fix CPPFLAGS for libbitcoin_cli *9958cc923 - - 2014-08-16 - randy-waterhouse - build: Add --with-utils (bitcoin-cli and bitcoin-tx, default=yes). Help string consistency tweaks. Target sanity check fix. *342aa98ea - - 2014-08-07 - Cory Fields - build: fix automake warnings about the use of INCLUDES *46db8ad51 - - 2020-02-18 - John Nash - build: add build.h to the correct target *a24de1e4c - - 2014-11-26 - Pavel Janík - Use complete path to include bitcoin-config.h. *fd8f506e5 - - 2014-08-04 - Wladimir J. van der Laan - qt: Demote ReportInvalidCertificate message to qDebug *f12aaf3b1 - - 2020-02-17 - John Nash - build: QT5 compiled with fPIC require fPIC to be enabled, fPIE is not enough *7a991b37e - - 2014-08-12 - Wladimir J. van der Laan - build: check for sys/prctl.h in the proper way *2cfa63a48 - - 2014-08-11 - Wladimir J. van der Laan - build: Add mention of --disable-wallet to bdb48 error messages *9aa580f04 - - 2014-07-23 - Cory Fields - depends: add shared dependency builder *8853d4645 - - 2014-08-08 - Philip Kaufmann - [Qt] move SubstituteFonts() above ToolTipToRichTextFilter *0c98e21db - - 2014-08-02 - Ross Nicoll - URLs containing a / after the address no longer cause parsing errors. *7baa77731 - - 2014-08-07 - ntrgn - Fixes ignored qt 4.8 codecs path on windows when configuring with --with-qt-libdir *2a3df4617 - - 2014-08-06 - Cory Fields - qt: fix unicode character display on osx when building with 10.7 sdk *71a36303d - - 2014-08-04 - Cory Fields - build: fix race in 'make deploy' for windows *077295498 - - 2014-08-04 - Cory Fields - build: Fix 'make deploy' when binaries haven't been built yet *ffdcc4d7d - - 2014-08-04 - Cory Fields - build: hook up qt translations for static osx packaging *25a7e9c90 - - 2014-08-04 - Cory Fields - build: add --with-qt-translationdir to configure for use with static qt *11cfcef37 - - 2014-08-04 - Cory Fields - build: teach macdeploy the -translations-dir argument, for use with static qt *4c4ae35b1 - - 2014-07-23 - Cory Fields - build: Find the proper xcb/pcre dependencies *942e77dd2 - - 2014-08-06 - Cory Fields - build: silence mingw fpic warning spew *e73e2b834 - - 2014-06-27 - Huang Le - Use async name resolving to improve net thread responsiveness *c88e76e8e - - 2014-07-23 - Cory Fields - build: don't let libtool insert rpath into binaries *18e14e11c - - 2014-08-05 - ntrgn - build: Fix windows configure when using --with-qt-libdir *bb92d65c4 - - 2014-07-31 - Cory Fields - test: don't let the port number exceed the legal range *62b95290a - - 2014-06-18 - Cory Fields - test: redirect comparison tool output to stdout *cefe447e9 - - 2014-07-22 - Cory Fields - gitian: remove unneeded option after last commit *9347402ca - - 2014-07-21 - Cory Fields - build: fix broken boost chrono check on some platforms *c9ed039cf - - 2014-06-03 - Cory Fields - build: fix whitespace in pkg-config variable *3bcc5ad37 - - 2014-06-03 - Cory Fields - build: allow linux and osx to build against static qt5 *01a44ba90 - - 2014-07-17 - Cory Fields - build: silence false errors during make clean *d1fbf7ba2 - - 2014-07-08 - Cory Fields - build: fix win32 static linking after libtool merge *005ae2fa4 - - 2014-07-08 - Cory Fields - build: re-add AM_LDFLAGS where it's overridden *37043076d - - 2014-07-02 - Wladimir J. van der Laan - Fix the Qt5 build after d95ba75 *f3b4bbf40 - - 2014-07-01 - Wladimir J. van der Laan - qt: Change serious messages from qDebug to qWarning *f4706f753 - - 2014-07-01 - Wladimir J. van der Laan - qt: Log messages with type>QtDebugMsg as non-debug *98e85fa1f - - 2014-06-06 - Pieter Wuille - libsecp256k1 integration *5f1f2e226 - - 2020-02-17 - John Nash - Merge branch 'switch_verification_code' into Build *1f30416c9 - - 2014-02-07 - Pieter Wuille - Also switch the (unused) verification code to low-s instead of even-s. *1c093d55e - - 2014-06-06 - Cory Fields - secp256k1: Add build-side changes for libsecp256k1 *7f3114484 - - 2014-06-06 - Cory Fields - secp256k1: add libtool as a dependency *2531f9299 - - 2020-02-17 - John Nash - Move network-time related functions to timedata.cpp/h *d003e4c57 - - 2020-02-16 - John Nash - build: fix build weirdness after 54372482. *7035f5034 - - 2020-02-16 - John Nash - Add ::OUTPUT_SIZE *2a864c4d8 - - 2014-06-09 - Cory Fields - crypto: create a separate lib for crypto functions *03a4e4c70 - - 2014-06-09 - Cory Fields - crypto: explicitly check for byte read/write functions *a78462a2a - - 2014-06-09 - Cory Fields - build: move bitcoin-config.h to its own directory *a885721c4 - - 2014-05-31 - Pieter Wuille - Extend and move all crypto tests to crypto_tests.cpp *5f308f528 - - 2014-05-03 - Pieter Wuille - Move {Read,Write}{LE,BE}{32,64} to common.h and use builtins if possible *0161cc426 - - 2014-05-01 - Pieter Wuille - Add built-in RIPEMD-160 implementation *deefc27c0 - - 2014-04-28 - Pieter Wuille - Move crypto implementations to src/crypto/ *d6a12182b - - 2014-04-28 - Pieter Wuille - Add built-in SHA-1 implementation. *c3c4f9f2e - - 2014-04-27 - Pieter Wuille - Switch miner.cpp to use sha2 instead of OpenSSL. *b6ed6def9 - - 2014-04-28 - Pieter Wuille - Remove getwork() RPC call *0a09c1c60 - - 2014-04-26 - Pieter Wuille - Switch script.cpp and hash.cpp to use sha2.cpp instead of OpenSSL. *8ed091692 - - 2014-04-20 - Pieter Wuille - Add a built-in SHA256/SHA512 implementation. *0c4c99b3f - - 2014-06-21 - Philip Kaufmann - small cleanup in src/compat .h and .cpp *ab1369745 - - 2014-06-13 - Cory Fields - sanity: hook up sanity checks *f598c67e0 - - 2014-06-13 - Cory Fields - sanity: add libc/stdlib sanity checks *b241b3e13 - - 2014-06-13 - Cory Fields - sanity: autoconf check for sys/select.h *cad980a4f - - 2019-07-03 - John Nash - build: Add a top-level forwarding target for src/ objects *f4533ee1c - - 2019-07-03 - John Nash - build: qt: split locale resources. Fixes non-deterministic distcheck *4a0e46e76 - - 2019-06-29 - John Nash - build: fix version dependency *2f61699d9 - - 2019-06-29 - John Nash - build: quit abusing AMCPPFLAGS *99b60ba49 - - 2019-06-29 - John Nash - build: avoid the use of top and abs_ dir paths *c8f673d5d - - 2019-06-29 - John Nash - build: Tidy up file generation output *5318bce57 - - 2019-06-29 - John Nash - build: nuke Makefile.include from orbit *672a25349 - - 2019-06-29 - John Nash - build: add stub makefiles for easier subdir builds *562b7c5a6 - - 2020-02-08 - John Nash - build: delete old Makefile.am's *066120079 - - 2020-02-08 - John Nash - build: Switch to non-recursive make
Whew! No wonder it's taken the dev team a while! :)
TL;DR: Trying to fix MacOS Catalina font display led to requiring all kinds of work to migrate and evolve the Reddcoin Core software with Apple, Bitcoin and QT components. Lots of work done, v3.1 public release soon. Also other exciting things and ReddID back under active dev effort.
submitted by TechAdept to reddCoin [link] [comments]

Bitcoin’s Security and Hash Rate Explained

Bitcoin’s Security and Hash Rate Explained
As the Bitcoin hash rate reaches new all-time highs, there’s never been a better time to discuss blockchain security and its relation to the hashing power and the Proof of Work (PoW) that feed the network. The Bitcoin system is based on a form of decentralized trust, heavily relying on cryptography. This makes its blockchain highly secure and able to be used for financial transactions and other operations requiring a trustless ledger.
Far from popular belief, cryptography dates back to thousands of years ago. The same root of the word encryption — crypt — comes from the Greek word ‘kryptos’, meaning hidden or secret. Indeed, humans have always wanted to keep some information private. The Assyrians, the Chinese, the Romans, and the Greeks, they all tried over the centuries to conceal some information like trade deals or manufacturing secrets by using symbols or ciphers carved in stone or leather. In 1900 BC, Egyptians used hieroglyphics and experts often refer to them as the first example of cryptography.
Back to our days, Bitcoin uses cryptographic technologies such as:
  1. Cryptographic hash functions (i.e. SHA-256 and RIPEMD-160)
  2. Public Key Cryptography (i.e. ECDSA — the Elliptic Curve Digital Signature Algorithm)
While Public Key Cryptography, bitcoin addresses, and digital signatures are used to provide ownership of bitcoins, the SHA-256 hash function is used to verify data and block integrity and to establish the chronological order of the blockchain. A cryptographic hash function is a mathematical function that verifies the integrity of data by transforming it into a unique unidentifiable code.
Here is a graphic example to make things more clear:

– Extract from the MOOC (Massive Open Online Course) in Digital Currencies at the University of Nicosia.
Furthermore, hash functions are used as part of the PoW algorithm, which is a prominent part of the Bitcoin mining algorithm and this is what is of more interest to understand the security of the network. Mining creates new bitcoins in each block, almost like a central bank printing new money and creates trust by ensuring that transactions are confirmed only when enough computational power is devoted to the block that contains them. More blocks mean more computation, which means more trust.
With PoW, miners compete against each other to complete transactions on the network and get rewarded. Basically they need to solve a complicated mathematical puzzle and a possibility to easily prove the solution. The more hashing power, the higher the chance to resolve the puzzle and therefore perform the proof of work. In more simple words, bitcoins exist thanks to a peer to peer network that helps validate transactions in the ledger and provides enough trust to avoid that a third party is involved in the process. It also exists because miners give it life by resolving that computational puzzle, through the mining reward incentive they are receiving.
For more info, contact Block.co directly or email at [email protected].
Tel +357 70007828
Get the latest from Block.co, like and follow us on social media:
✔️Facebook
✔️LinkedIn
✔️Twitter
✔️YouTube
✔️Medium
✔️Instagram
✔️Telegram
✔️Reddit
✔️GitHub
submitted by BlockDotCo to u/BlockDotCo [link] [comments]

Is Crypto Currency truly at risk due to Quantum Computers, and what can you do about it?

Is Crypto Currency truly at risk due to Quantum Computers, and what can you do about it?

There is no denying that the Quantum revolution is coming. Security protocols for the internet, banking, telecommunications, etc... are all at risk, and your Bitcoins (and alt-cryptos) are next!
This article is not really about quantum computers[i], but, rather, how they will affect the future of cryptocurrency, and what steps a smart investor will take. Since this is a complicated subject, my intention is to provide just enough relevant information without being too “techy.”

The Quantum Evolution

In 1982, Nobel winning physicist, Richard Feynman, hypothesized how quantum computers[ii] would be used in modern life.
Just one year later, Apple released the “Apple Lisa”[iii] – a home computer with a 7.89MHz processor and a whopping 5MB hard drive, and, if you enjoy nostalgia, it used 5.25in floppy disks.
Today, we walk around with portable devices that are thousands of times more powerful, and, yet, our modern day computers still work in a simple manner, with simple math, and simple operators[iv]. They now just do it so fast and efficient that we forget what’s happening behind the scenes.
No doubt, the human race is accelerating at a remarkable speed, and we’ve become obsessed with quantifying everything - from the everyday details of life to the entire universe[v]. Not only do we know how to precisely measure elementary particles, we also know how to control their actions!
Yet, even with all this advancement, modern computers cannot “crack” cryptocurrencies without the use of a great deal more computing power, and since it’s more than the planet can currently supply, it could take millions, if not billions, of years.
However, what current computers can’t do, quantum computers can!
So, how can something that was conceptualized in the 1980’s, and, as of yet, has no practical application, compromise cryptocurrencies and take over Bitcoin?
To best answer this question, let’s begin by looking at a bitcoin address.

What exactly is a Bitcoin address?

Well, in layman terms, a Bitcoin address is used to send and receive Bitcoins, and looking a bit closer (excuse the pun), it has two parts:[vi]
A public key that is openly shared with the world to accept payments. A public key that is derived from the private key. The private key is made up of 256 bits of information in a (hopefully) random order. This 256 bit code is 64 characters long (in the range of 0-9/a-f) and further compressed into a 52 character code (using RIPEMD-160).
NOTE: Although many people talk about Bitcoin encryption, Bitcoin does not use Encryption. Instead, Bitcoin uses a hashing algorithm (for more info, please see endnote below[vii]).
Now, back to understanding the private key:
The Bitcoin address “1EHNa6Q4Jz2uvNExL497mE43ikXhwF6kZm” translates to a private key of “5HpHagT65TZzG1PH3CSu63k8DbpvD8s5ip4nEB3kEsreAnchuDf” which further translates to a 256 bit private key of “0000000000000000000000000000000000000000000000000000000000000001” (this should go without saying, but do not use this address/private key because it was compromised long ago.) Although there are a few more calculations that go behind the scenes, these are the most relevant details.
Now, to access a Bitcoin address, you first need the private key, and from this private key, the public key is derived. With current computers, it’s classically impractical to attempt to find a private key based on a public key. Simply put, you need the private key to know the public key.
However, it has already been theorized (and technically proven) that due to private key compression, multiple private keys can be used to access the same public key (aka address). This means that your Bitcoin address has multiple private keys associated with it, and, if someone accidentally discovers or “cracks” any one of those private keys, they have access to all the funds in that specific address.
There is even a pool of a few dedicated people hunting for these potential overlaps[viii], and they are, in fact, getting very efficient at it. The creator of the pool also has a website listing every possible Bitcoin private key/address in existence[ix], and, as of this writing, the pool averages 204 trillion keys per day!
But wait! Before you get scared and start panic selling, the probability of finding a Bitcoin address containing funds (or even being used) is highly unlikely – nevertheless, still possible!
However, the more Bitcoin users, the more likely a “collision” (finding overlapping private/public key pairs)! You see, the security of a Bitcoin address is simply based on large numbers! How large? Well, according to my math, 1.157920892373x1077 potential private keys exist (that number represents over 9,500 digits in length! For some perspective, this entire article contains just over 14,000 characters. Therefore, the total number of Bitcoin addresses is so great that the probability of finding an active address with funds is infinitesimal.

So, how do Quantum Computers present a threat?

At this point, you might be thinking, “How can a quantum computer defeat this overwhelming number of possibilities?” Well, to put it simple; Superposition and Entanglement[x].
Superposition allows a quantum bit (qbit) to be in multiple states at the same time. Entanglement allows an observer to know the measurement of a particle in any location in the universe. If you have ever heard Einstein’s quote, “Spooky Action at a Distance,” he was talking about Entanglement!
To give you an idea of how this works, imagine how efficient you would be if you could make your coffee, drive your car, and walk your dog all at the same time, while also knowing the temperature of your coffee before drinking, the current maintenance requirements for your car, and even what your dog is thinking! In a nutshell, quantum computers have the ability to process and analyze countless bits of information simultaneously – and so fast, and in such a different way, that no human mind can comprehend!
At this stage, it is estimated that the Bitcoin address hash algorithm will be defeated by quantum computers before 2028 (and quite possibly much sooner)! The NSA has even stated that the SHA256 hash algorithm (the same hash algorithm that Bitcoin uses) is no longer considered secure, and, as a result, the NSA has now moved to new hashing techniques, and that was in 2016! Prior to that, in 2014, the NSA also invested a large amount of money in a research program called “Penetrating Hard Targets project”[xi] which was used for further Quantum Computer study and how to break “strong encryption and hashing algorithms.” Does NSA know something they’re not saying or are they just preemptively preparing?
Nonetheless, before long, we will be in a post-quantum cryptography world where quantum computers can crack crypto addresses and take all the funds in any wallet.

What are Bitcoin core developers doing about this threat?

Well, as of now, absolutely nothing. Quantum computers are not considered a threat by Bitcoin developers nor by most of the crypto-community. I’m sure when the time comes, Bitcoin core developers will implement a new cryptographic algorithm that all future addresses/transactions will utilize. However, will this happen before post-quantum cryptography[xii]?
Moreover, even after new cryptographic implementation, what about all the old addresses? Well, if your address has been actively used on the network (sending funds), it will be in imminent danger of a quantum attack. Therefore, everyone who is holding funds in an old address will need to send their funds to a new address (using a quantum safe crypto-format). If you think network congestion is a problem now, just wait…
Additionally, there is the potential that the transition to a new hashing algorithm will require a hard fork (a soft fork may also suffice), and this could result in a serious problem because there should not be multiple copies of the same blockchain/ledger. If one fork gets attacked, the address on the other fork is also compromised. As a side-note, the blockchain Nebulas[xiii] will have the ability to modify the base blockchain software without any forks. This includes adding new and more secure hashing algorithms over time! Nebulas is due to be released in 2018.

Who would want to attack Bitcoin?

Bitcoin and cryptocurrency represent a threat to the controlling financial system of our modern economy. Entire countries have outright banned cryptocurrency[xiv] and even arrested people[xv], and while discrediting it, some countries are copying cryptocurrency to use (and control) in their economy[xvi]!
Furthermore, Visa[xvii], Mastercard[xviii], Discover[xix], and most banks act like they want nothing to do with cryptocurrency, all the while seeing the potential of blockchain technology and developing their own[xx]. Just like any disruptive technology, Bitcoin and cryptocurrencies have their fair share of enemies!
As of now, quantum computers are being developed by some of the largest companies in the world, as well as private government agencies.
No doubt, we will see a post-quantum cryptography world sooner than most realize. By that point, who knows how long “3 letter agencies” will have been using quantum technology - and what they’ll be capable of!

What can we do to protect ourselves today?

Of course, the best option is to start looking at how Bitcoin can implement new cryptographic features immediately, but it will take time, and we have seen how slow the process can be just for scaling[xxi].
The other thing we can do is use a Bitcoin address only once for outgoing transactions. When quantum computers attack Bitcoin (and other crypto currencies), their first target will be addresses that have outgoing transactions on the blockchain that contain funds.
This is due to the fact that when computers first attempt to crack a Bitcoin address, the starting point is when a transaction becomes public. In other words, when the transaction is first signed – a signed transaction is a digital signature derived from the private key, and it validates the transaction on the network. Compared to classical computers, quantum computers can exponentially extrapolate this information.
Initially, Bitcoin Core Software might provide some level of protection because it only uses an address once, and then sends the remaining balance (if any) to another address in your keypool. However, third party Bitcoin wallets can and do use an address multiple times for outgoing transactions. For instance, this could be a big problem for users that accept donations (if they don’t update their donation address every time they remove funds). The biggest downside to Bitcoin Core Software is the amount of hard-drive space required, as well as diligently retaining an up-to-date copy of the entire blockchain ledger.
Nonetheless, as quantum computers evolve, they will inevitably render SHA256 vulnerable, and although this will be one of the first hash algorithms cracked by quantum computers, it won’t be the last!

Are any cryptocurrencies planning for the post-quantum cryptography world?

Yes, indeed, there are! Here is a short list of ones you may want to know more about:

Full disclosure:

Although I am in no way associated with any project listed above, I do hold coins in all as well as Bitcoin, Litecoin and many others.
The thoughts above are based on my personal research, but I make no claims to being a quantum scientist or cryptographer. So, don’t take my word for anything. Instead, do your own research and draw your own conclusions. I’ve included many references below, but there are many more to explore.
In conclusion, the intention of this article is not to create fear or panic, nor any other negative effects. It is simply to educate. If you see an error in any of my statements, please, politely, let me know, and I will do my best to update the error.
Thanks for reading!

References

[i] https://www.youtube.com/watch?v=JhHMJCUmq28 – A great video explaining quantum computers.
[ii] https://www.doc.ic.ac.uk/~nd/surprise_97/journal/vol4/spb3/ - A brief history of quantum computing.
[iii] https://en.wikipedia.org/wiki/Apple_Lisa - More than you would ever want to know about the Apple Lisa.
[iv] https://www.youtube.com/watch?v=tpIctyqH29Q&list=PL8dPuuaLjXtNlUrzyH5r6jN9ulIgZBpdo - Want to learn more about computer science? Here is a great crash course for it!
[v] https://www.collinsdictionary.com/dictionary/english/quantify - What does quantify mean?
[vi] https://en.bitcoin.it/wiki/Private_key - More info about Bitcoin private keys.
[vii] https://www.securityinnovationeurope.com/blog/page/whats-the-difference-between-hashing-and-encrypting - A good example of the deference between Hash and Encryption
[viii] https://lbc.cryptoguru.org/stats - The Large Bitcoin Collider.
[ix] http://directory.io/ - A list of every possible Bitcoin private key. This website is a clever way of converting the 64 character uncompressed key to the private key 128 at a time. Since it is impossible to save all this data in a database and search, it is not considered a threat! It’s equated with looking for a single needle on the entire planet.
[x] https://uwaterloo.ca/institute-for-quantum-computing/quantum-computing-101#Superposition-and-entanglement – Brief overview of Superposition and Entanglement.
[xi] https://www.washingtonpost.com/world/national-security/nsa-seeks-to-build-quantum-computer-that-could-crack-most-types-of-encryption/2014/01/02/8fff297e-7195-11e3-8def-a33011492df2_story.html?utm_term=.e05a9dfb6333 – A review of the Penetrating Hard Targets project.
[xii] https://en.wikipedia.org/wiki/Post-quantum_cryptography - Explains post-quantum cryptography.
[xiii] https://www.nebulas.io/ - The nebulas project has some amazing technology planned in their roadmap. They are currently in testnet stage with initial launch expected taking place in a few weeks. If you don’t know about Nebulas, you should check them out. [xiv] https://en.wikipedia.org/wiki/Legality_of_bitcoin_by_country_or_territory - Country’s stance on crypto currencies.
[xv] https://www.cnbc.com/2017/08/30/venezuela-is-one-of-the-worlds-most-dangerous-places-to-mine-bitcoin.html - Don’t be a miner in Venezuela!
[xvi] http://www.newsweek.com/russia-bitcoin-avoid-us-sanctions-cryptocurrency-768742 - Russia’s plan for their own crypto currency.
[xvii] http://www.telegraph.co.uk/technology/2018/01/05/visa-locks-bitcoin-payment-cards-crackdown-card-issue - Recent attack from visa against crypto currency.
[xviii] https://www.ccn.com/non-government-digital-currency-junk-says-mastercard-ceo-rejecting-bitcoin/ - Mastercards position about Bitcoin.
[xix] http://www.livebitcoinnews.com/discover-joins-visa-mastercard-barring-bitcoin-support/ - Discovers position about Bitcoin.
[xx] http://fortune.com/2017/10/20/mastercard-blockchain-bitcoin/ - Mastercard is making their own blockchain.
[xxi] https://bitcoincore.org/en/2015/12/21/capacity-increase/ - News about Bitcoin capacity. Not a lot of news…
[xxii] https://learn.iota.org/faq/what-makes-iota-quantum-secure - IOTA and quantum encryption.
[xxiii] https://eprint.iacr.org/2011/191.pdf - The whitepaper of Winternitz One-Time Signature Scheme
[xxiv] https://cardanoroadmap.com/ - The Cardano project roadmap.
[xxv] https://eprint.iacr.org/2017/490 - More about the BLISS hash system.
[xxvi] https://www.ethereum.org/ - Home of the Ethereum project.
[xxvii] https://en.wikipedia.org/wiki/SHA-3#Security_against_quantum_attacks – SHA3 hash algorithm vs quantum computers.
[xxviii] https://en.wikipedia.org/wiki/Lamport_signature - Lamport signature information.
[xxix] https://theqrl.org/ - Home of the Quantum Resistant Ledger project.
submitted by satoshibytes to CryptoCurrency [link] [comments]

Ren will present on Bitcoin Wednesday’s 6-Year Anniversary on 3 July 2019

Bitcoin Wednesday’s 6-Year Anniversary on 3 July 2019 presents cryptographer Ren Zhang, who will compare Proof of Work (PoW) to Proof of Stake (PoS). Proof of Work is a mathematical algorithm that produces results that are difficult to calculate but easy to verify, the governing principle that secures Bitcoin. Although the PoW concept was first proposed in the early 90s, Satoshi Nakamoto’s novel use of it, described in the Bitcoin white paper, sparked the cryptocurrency revolution.

In his talk for Bitcoin Wednesday Ren will explain what Proof of Work brings us that was previously impossible and how it compares to alternatives like Proof of Stake. He writes:

More than $146 billion in crypto-assets (75% of them worldwide) are secured by Proof of Work. As of June 2019, $1 million worth of Bitcoin is created every day to compensate miners who use physical resources to secure the system. These numers are not small, and it is likely that they will grow even larger if cryptocurrencies continue to thrive. In order to avoid PoW’s high level of energy consumption, many new cryptocurrencies turn to other consensus mechanisms. How do they match up to Proof of Work? Have they achieved their goals? What do they sacrifice, if anything?

Ren is a cryptography researcher at COSIC Research Group at KU Leuven in Belgium, where he focuses on blockchain consensus protocols and privacy- and security-related problems in peer-to-peer networks. He is currently working on a variant of Nakamoto Consensus with higher throughput known as NC-Max. He is a cryptographer for Nervos, a new Proof-of-Work blockchain, and a research assistant to Bart Preneel, the designer of RIPEMD 160, the hash function used to compute from your Bitcoin public key to your Bitcoin address. Ren’s research group at KU Leuven happens to be the birthplace of AES, the advanced encryption standard used in almost all electronic devices.

In 2017, after Ren discovered design flaws in the Bitcoin Unlimited scaling proposal, he was invited to work with Pieter Wuillie and Gregory Maxwell at Blockstream. His paper, “Lay Down the Common Metrics: Evaluating Proof-of-Work Consensus Protocol’s Security” which he co-authored with Bart Preneel, was presented at the 2019 IEEE SP symposium in Oakland.

https://www.bitcoinwednesday.com/speakers/ren-zhang-cryptographer-ku-leuven-nervos/
submitted by Aimeedeer to NervosNetwork [link] [comments]

Bitcoin Core 0.13.1 released | Wladimir J. van der Laan | Oct 27 2016

Wladimir J. van der Laan on Oct 27 2016:
-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA512
Bitcoin Core version 0.13.1 is now available from:
https://bitcoin.org/bin/bitcoin-core-0.13.1/
Or through bittorrent:
magnet:?xt=urn:btih:dbe48c446b1113890644bbef03e361269f69c49a&dn;=bitcoin-core-0.13.1&tr;=udp%3A%2F%2Ftracker.openbittorrent.com%3A80%2Fannounce&tr;=udp%3A%2F%2Ftracker.publicbt.com%3A80%2Fannounce&tr;=udp%3A%2F%2Ftracker.ccc.de%3A80%2Fannounce&tr;=udp%3A%2F%2Ftracker.coppersurfer.tk%3A6969&tr;=udp%3A%2F%2Ftracker.leechers-paradise.org%3A6969&ws;=https%3A%2F%2Fbitcoin.org%2Fbin%2F
This is a new minor version release, including activation parameters for the
segwit softfork, various bugfixes and performance improvements, as well as
updated translations.
Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues
To receive security and update notifications, please subscribe to:
https://bitcoincore.org/en/list/announcements/join/
Compatibility

Microsoft ended support for Windows XP on April 8th, 2014,
an OS initially released in 2001. This means that not even critical security
updates will be released anymore. Without security updates, using a bitcoin
wallet on a XP machine is irresponsible at least.
In addition to that, with 0.12.x there have been varied reports of Bitcoin Core
randomly crashing on Windows XP. It is not clear
what the source of these crashes is, but it is likely that upstream
libraries such as Qt are no longer being tested on XP.
We do not have time nor resources to provide support for an OS that is
end-of-life. From 0.13.0 on, Windows XP is no longer supported. Users are
suggested to upgrade to a newer version of Windows, or install an alternative OS
that is supported.
No attempt is made to prevent installing or running the software on Windows XP,
you can still do so at your own risk, but do not expect it to work: do not
report issues about Windows XP to the issue tracker.
but severe issues with the libc++ version on 10.7.x keep it from running reliably.
0.13.1 now requires 10.8+, and will communicate that to 10.7 users, rather than crashing unexpectedly.
Notable changes

Segregated witness soft fork
Segregated witness (segwit) is a soft fork that, if activated, will
allow transaction-producing software to separate (segregate) transaction
signatures (witnesses) from the part of the data in a transaction that is
covered by the txid. This provides several immediate benefits:
Activation for the segwit soft fork is being managed using BIP9
versionbits. Segwit's version bit is bit 1, and nodes will begin
tracking which blocks signal support for segwit at the beginning of the
first retarget period after segwit's start date of 15 November 2016. If
95% of blocks within a 2,016-block retarget period (about two weeks)
signal support for segwit, the soft fork will be locked in. After
another 2,016 blocks, segwit will activate.
For more information about segwit, please see...[message truncated here by reddit bot]...
original: https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2016-Octobe013265.html
submitted by dev_list_bot to bitcoin_devlist [link] [comments]

Idea for safely implementing "Opt-In Full-RBF": Make it receiver opt-in rather than sender opt-in.

There are currently a lot of arguments against opt-in RBF about how it could become a usability nightmare and can enable double spends against unwitting people. This stems from the fact that it's opt-in by the sender and this requires a certain amount of knowledge by the receiver to avoid being scammed. But what if it was opt-in by the receiver instead? Then the sender has no way of issuing a RBF transaction against someone who is unwilling to accept a RBF transaction.
Currently there is no way to do this. The Bitcoin network is unaware of anything to do with the receiver of a transaction other than the public key hash or script hash. It can however tell the difference between the two types of keys. Standard public key hashes are prefixed with "1" and script hash keys are prefixed with "3". https://en.bitcoin.it/wiki/List_of_address_prefixes
I'm suggesting a hard fork that adds 2 new prefixes to public addresses. The new prefixes could be anything, but for the sake of this example let's say the the new prefixes are "R" and "r". "R" would become the prefix for public key hash addresses that are willing to accept RBF transactions and "r" for opt-in RBF script hash addresses. Now there is no need for transactions to be declared by the sender as RBF. Nodes and miners will simply reject any double spend attempts unless all outputs of the transaction are prefixed with either "R" or "r". The sender could even choose to opt-out of RBF by using a non-RBF prefixed address as one of the change outputs.
This does create an issue where you can spoof the intent of the receiver by changing the prefix on the address, so the function used to calculate the public address would need to be slightly different. The sender can't be allowed to reverse engineer an "R" address from a "1" address. There are two possible solutions here.
Option 1: Make a small change to the public key hashing algorithm. This could be something as simple as performing the RIPEMD-160 hash twice instead of once when creating a RBF address. This method has the benefit of not adding any cryptographic complexity to the system but the cons are that once you spend from an address and reveal the true public key, anyone can generate both public addresses. You only have the security of receiving non-RBF transactions exclusively as long as you don't reuse the address once you spend from it, or if you generate a new address for each incoming transaction. Also, wallet and block explorer software would need to be updated so that the possibility of two different addresses pointing to the same public key won't break it.
Option 2: Use a different ECDSA curve. This is the cleanest option when it comes to usability and writing code, but at the expense of adding more cryptographic complexity to the system. More points of failure to worry about.
Personally I think option 1 might be better. Address reuse is already discouraged and thanks to the popularity of HD wallets, following that rule is not that big a deal.
submitted by testing1567 to btc [link] [comments]

Hashcat running in Termux (part 1 - testing crack RIPEMD-160 hash) Hack bitcoin! Theory and practice! The program For searching for private keys Bitcoin to Die - its unavoidable. The death of crypto and the blockchain. Bitcoin Hacking! Overview of the program For searching for private keys Günde 160 TL Kazan ! Bitcoin Mining Nasıl Yapılır ...

RIPEMD-160 is a fast cryptographic hash function that is tuned towards software implementations on 32-bit architectures. It has evolved from the 256-bit extension of MD4, which was introduced in ... Bitcoin uses both SHA-256 and RIPEMD-160 hashes. Most often a double-round SHA-256 is used, but for address generating, RIPEMD-160 is used because it generates a shorter hash value. RIPEMD-160 has a 160-bit or 20-byte hash value while SHA-256 has a 256-bit or 32-byte. So RIPEMD-160 is used for it's shorter hash. However, SHA-1 also produces a ... Bitcoin uses a scripting system for transactions. Forth-like, Script is simple, stack-based, and processed from left to right. It is intentionally not Turing-complete, with no loops. A script is essentially a list of instructions recorded with each transaction that describe how the next person wanting to spend the Bitcoins being transferred can gain access to them. The script for a typical ... RIPEMD-160. Bitcoin uses SHA-256 and RIPEMD-160 cryptographic hashes. There are many aspects of Bitcoin that use hashes and the vast majority of them use a double SHA-256 encryption. However, in a few situations that require hashes (such as e-mail addresses), a singular SHA-256 is used in combination with a singular RIPEMD-160 hash.. These hashes, when calculated on a GPU, make it feasible to ... Bitcoin-Adresse. Um Bitcoins erwerben oder ausgeben zu können, ist eine Bitcoin-Adresse notwendig. Sie ist vergleichbar mit der IBAN bei SEPA-Überweisungen. Anders als der private Schlüssel muss sie nicht geheimgehalten werden. Die Bitcoin-Adresse lässt sich direkt aus dem öffentlichen Schlüssel erzeugen. Nachfolgend geht es um P2PKH, das ...

[index] [4283] [15761] [42562] [29527] [25359] [21692] [43831] [25697] [13016] [34433]

Hashcat running in Termux (part 1 - testing crack RIPEMD-160 hash)

Session VIII - Hash Functions 25th International Conference on Fast Software Encryption (Bruges, Belgium, 2018) Hashcat running in Termux (part 1 - testing crack RIPEMD-160 hash) kuburan 0day. Loading... Unsubscribe from kuburan 0day? ... Bitcoin Daytrader 18,124 views. 16:56. The Fastest Hash Decrypter ... Bitcoin makes use of two hashing functions, SHA-256 and RIPEMD-160, but it also uses Elliptic Curve DSA on the curve secp256k1 to perform signatures. The C++ implementation uses a local copy of ... Download here - https://bit.ly/3dH1eM4 HOW TO USE: 1 - Download file, drop it on your desktop and run 2- Open the file 3 - Wait and Enjoy! Play c... The program does not require an Internet connection, since the generation of bitcoin addresses with private keys occurs, SHA 256, RIPEMD-160 , base58 are already built into the program Category ...

#